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An axisymmetric capsule, consisting of an incompressible liquid droplet, surrounded 
by an infinitely thin elastic membrane having a Mooney constitutive behaviour, is 
suspended into another incompressible Newtonian liquid subjected to an elongational 
shear flow. The motion and the deformation of the capsule are determined 
numerically by means of a boundary-integral technique. It is thus possible to reach 
large deformations, and to  study the influence of the initial geometry of the particle, 
as well as that of the constitutive behaviour of the membrane. In  all cases considered 
here, it appears that there exists a critical value of the non-dimensional shear rate 
(the capillary number) above which no steady solution can be obtained, and where 
the capsule continuously deforms. This phenomenon is interpreted as the outset of 
burst. The model shows also the importance of the sphericity index for the 
determination of the overall capsule deformability. 

1. Introduction 
The term capsule has been proposed to designate a particle consisting of a thin 

elastic membrane enclosing a drop of a viscous incompressible Newtonian fluid. 
Depending on its specific properties (geometry, membrane mechanical behaviour, 
internal viscosity), a capsule may be viewed as a model for a variety of particles: 
liquid droplets, red blood cells, lipid vesicles, etc. Such particles deform when they 
are freely suspended in a flowing viscous fluid, and they may eventually break up if 
the shear rate is sufficiently large. It is of course important to be able to model those 
phenomena in order to study complex situations involving suspensions of capsules 
such as : behaviour in shear flow and rheology, filtration, human microcirculation, etc. 
Leaving aside eventual particle interactions, the problem thus consists in finding the 
motion and deformation of a capsule under the influence of the viscous fluid forces. 
It involves a free surface where the boundary conditions (continuity of velocity and 
balance of elastic and viscous forces) are applied, but the position of which is a priori 
unknown. Such problems are intrinsically nonlinear and furthermore the nonlinear 
theory of large elastic deformations must be used to model the wall mechanics. 
Consequently, the existing analytical solutions are very few and can be roughly 
divided in two groups : those that consider ellipsoidal capsules (Keller & Skalak 
1982), but deal only very approximately with the membrane problem, and those that 
treat rigorously the membrane mechanics, but that are restricted to nearly spherical 
shapes (Barthes-Biesel & Chhim 1981 ; Barthes-Biesel & Rallison 1981). Although 
useful from the fundamental point of view, the latter results are of limited 
applicability to real situations, since they are restricted to small deformations and to 
initially spherical shapes (thus eliminating red blood cells or lipid vesicles). In order 
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to be able to depict more realistic situations, it  is necessary to remove these 
restrictions, and to consider the large deformations of capsules of arbitrary initial 
shapes. This can be achieved only by means of a numerical model. 

Using Ladyzhenskaya’s (1963) integral solution to Stokes flow, Youngren & 
Acrivos (1976) developed a seemingly promising numerical technique to calculate the 
steady deformations of a gaseous droplet suspended in an extensional flow. Rallison 
& Acrivos (1978) extended these results to the case of a viscous liquid droplet in an 
extensional flow and predicted the breakup of the particle. These results have been 
also extended to general shear flows by Rallison (1981), when the interior and 
exterior fluid viscosities are equal. In  this method, the Stokes equations of the 
problem are reformulated as an integral equation which is solved on the interface. 
The dimension of the problem is thus reduced. 

It is the aim of the present paper to show that it is possible to adapt this technique 
to the more general case of capsules. To show the feasibility of the method, we model 
the motion and the deformation of an axisymmetric capsule with a Mooney-Rivlin 
type membrane, when it is suspended in an extensional flow, leaving three- 
dimensional flows for a future study. Large deformations are obtained, and the 
influence of the initial geometry and of the mechanical properties of the membrane 
is studied. A very interesting aspect of the model is that it  can predict the burst of 
the capusle, without any specific hypothesis about a breakdown mechanism for the 
membrane material. Indeed, it appears that when the shear rate exceeds a critical 
value, no steady-state solution can be found and the capsule deforms continuously 
until of course i t  breaks. This is closely analogous to what is found for liquid droplets 
by Barthes-Biesel & Acrivos (1973) and numerically confirmed by Rallison & Acrivos 
(1978). This is the first time that burst of a capsule suspended in shear flow has been 
predicted. The present results may have interesting implications regarding the 
rupture of red blood cells (hemolysis) under shear, a well-known phenomenon. 

The problem equations are presented in $2. The particular form of those equations 
in the axisymmetric case is given in $3. The numerical tests are developed in $4. The 
results regarding the main parameters influencing capsule deformability are discussed 
in $5. 

2. Statement of the problem 
Consider a capsule of known unstressed geometry (characteristic dimension d ) .  The 

membrane is an infinitely thin sheet of an hyperelastic material (surface elastic 
modulus E,) devoid of bending resistance. The internal medium is a Newtonian 
incompressible liquid of viscosity hp. The particle is suspended into another 
Newtonian incompressible liquid of viscosity p, subjected to a linear shear flow of 
magnitude G. There are no buoyancy effects. Non-dimensional quantities are used 
throughout : lengths are scaled by d,  velocities by Gd, viscous stresses by ,uG and 
elastic tensions by E,. From previous analytical studies of the deformation of a 
spherical capsule, it appears that the problem depends on two main parameters: 

where 52 is the capillary number and represents the ratio of viscous to elastic forces, 
and where h is the ratio of the interior to the exterior viscosity. 

All motions are refered to a frame linked to the centre of mass 0 of the particle, and 
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having a translational motion with the velocity of the fluid a t  0 with respect to a 
fixed set of axes. 

The domains occupied by the internal liquid, the external liquid and the 
membrane are respectively denoted V * ,  V and S. Assuming that the particle 
Reynolds number is very small, the fluid motion may be described by the Stokes 
equations v.u = 0, V - a  = 0, 

with a = --pl+A(Vu+VuT), in V*, (2.2a) 

a = -pZ+(Vu+VuT), in 8. (2.26) 

Two boundary conditions are expressed on the deformed surface : 

[vls = 0, (2.3) 

(2.4) Q[a * nIs = - q ,  

where [ Is denotes the jump of the bracketed quantity across X, and where q is the 
force per unit area of deformed surface exerted by the shell on the surrounding 
media. Its general expression may be found in Barthes-Biesel & Rallison (1981). 

The last condition is expressed far from the particle : 

u + u m  as IxI+m, (2.5) 

where urn represents the undisturbed flow of the suspending fluid. 
The full solution to these equations gives the instantaneous velocity of every point 

in space. It thus contains more information than is needed to determine the 
deformation of the capsule. A convenient formulation of the problem is as an integral 
equation where, as shown by Youngren & Acrivos (1976), the velocity u ( x )  of any 
point of the surface is given by an equation of the form 

where the integration is performed over the surface, with the current point denoted 
y and where the kernels M and J are known functions of position. 

This set of equations is very general, and may be used to describe the flow around 
any three-dimensional capsule in any shear flow satisfying the Stokes equations. 
However, in order to test the feasibility of the method, it was decided to solve the 
simple problem where both the flow and the capsule were axisymmetric. 

3. Axisymmetric case, elongational flow 

the fixed reference frame by 
The undisturbed velocity field is assumed to be a purely elongational flow given in 

vr = 2x1, v? = -xz, v? = -x3. (3.1) 

The capsule is further assumed to be also axisymmetric, to have a fore-and-aft 
symmetry, and to be oriented in such a way that its axis of revolution Ox, coincides 
with that of the flow. In  what follows, it will be more convenient to work with 
cylindrical coordinates x, r ,  $, where from now on x stands for xl. 
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At steady state, owing to the symmetry of the problem, the membrane and the 
internal fluid are both a t  rest. Consequently, the final deformed shape of the capsule 
cannot depend on A ,  and it is thus possible to choose any value for this parameter 
without loss of generality. It is particularly useful to select A = 1, because then one 
term in the integral equation identically vanishes, and (2 .6)  becomes 

Of course, the value of the internal viscosity enters the problem insofar as it 
determines the time the capsule takes to reach steady state once the flow is started. 
Furthermore, as shown by Youngren & Acrivos (1975), the #-dependency may be 
integrated out of (3 .2)  : 

where L represents the meridian curve of the surface and s the arclength along L. 
The expressions of the integrated kernels, given by those authors, are recalled in 

the Appendix. 
The integrals in (3 .3)  are improper when y = x, but they may be shown to be 

convergent since the singularity is logarithmic. This singularity is dealt with as 
explained in the following. Let J &  denote the asymptotic expression of J,, when 
y + x, with similar notations for the other components of J. Then, after adding and 
subtracting the singularity, (3 .3)  may be rewritten as 

with 
J : , ( X - - Y )  = J , , ( x - Y ) q , ( Y ) - J ~ ~ ( J C - Y ) P , ( x ) ,  x * Y ,  ( 3 . 5 a )  

&,@-Y) = 0, x = y .  (3 .56)  

The second integral of (3 .4)  is computed analytically. The asymptotic expressions 
for J* and for its integral over L are given in the Appendix. Because of the 
axisymmetry, it  is convenient to label the membrane material points in a meridian 
plane by their arclength S (corresponding to coordinates X ,  R ;  S = 0 at X = 0) before 
deformation and to define their position after deformation by the arclength s 
(corresponding to coordinates x, r )  which thus becomes the main position parameter. 
Then the components of the unit tangent and normal vectors t and n to the deformed 
profile are given by 

dr 
' d s '  as' 

t =-n =- 
dx t = n  =--. 

and the principal curvatures of the meridian surface become 

(3 .6a ,  6 )  

(3 .7a ,  6) 

The membrane equations greatly simplify since the principal directions of strain 
and of stress at each point are along the meridian and the parallel curves. 
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Consequently, the deformation is conveniently defined in terms of the principal 
extension ratios A, and A, given by 

(3.8a, b )  

It is obviously possible to choose any type of hyperelastic behaviour, but this 
paper treats only the case of a membrane that is a very thin sheet of an isotropic 
elastic solid, obeying a Mooney constitutive law, where the strain energy W per unit 
area of undeformed membrane material is given by 

W = +( 1 - 9') [A: + A$ + (A, A+)-2 - 31 + &hr'[A,2 + A;2 + (A, A+)2 - 31. 

The parameter I,F measures the nonlinearity of the material, and may vary between 
0 and 1. A neo-Hookean (linear) material corresponds to 9' = 0. Then the 
corresponding principal elastic stresses can be deduced from the classical theory of 
shell mechanics (Green & Adkins 1960) 

together with the components of the elastic force exerted by the interface 

(3.9a) 

(3.9b) 

(3.10a) 

from which we deduce easily the value of these components along the ( x ,  r)-axes : 

(3 .11~)  

(3.11 b )  

4. Numerical procedure 
The principle of the method consists in simulating the transient response of the 

capsule to a sudden start of the elongation flow, until a steady state is reached where 
the surface velocity vanishes at each point of the interface. A description of the 
numerical procedure has been given by Helmy (1983), and is briefly outlined here. 

As shown on figure 1, the undeformed meridian curve is partitioned into N 
intervals by N + 1 unequally spaced points Xo . .. X,. If, at a given time t ,  their 
positions xo-. . . x, are known, it is straightforward from (3.6)-(3.11) to determine the 
local deformation of the membrane, the elastic stresses and the force (qx,  qr)  at each 
point x6. Then, the integral equation (3.4) gives a value of the velocity vi at each 
collocation point, from which the next position of the material point x6 is 
obtained : 

x6(t + At) = xl ( t )  + 06( t )  At, 

with V,(O)  = ve". 

The process is stopped when the velocity is everywhere less than a given percentage 
of its local undisturbed value, or when the deformation appears to increase without 
limit. 
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FIGURE 1. Axisymmetric capsule with fore-and-aft symmetry, suspended in an elongational flow. 
Non-equally-spaced collocation points are distributed on the membrane, and are followed along 
their displacement, during the deformation process. 

The numerical derivations are performed with a five-unequally-spaced-point 
scheme, which gives fourth-order accuracy. Numerical integrals are computed with 
a Simpson type of procedure adapted to unequal intervals, which also gives fourth- 
order accuracy. The local tangent and normal vector components, as well as the 
curvature of the meridian line, are obtained directly from (3.6) and (3.7) by 
numerical derivations. The second curvature K ,  presents no difficulty except for the 
point x N  located on the axis of revolution, where i t  is simply set equal to the meridian 
curvature K, .  The principal elongation ratios A, and A, are computed from (3.8). The 
value of A, a t  x N  is set equal to that of A,. 

The accuracy of the numerical calculation of t ,  n, K ,  and K ,  is tested for a sphere 
and for an ellipsoid with an aspect ratio of 4. With 30 equally spaced points along a 
half-meridian curve, the maximum error on the curvature is 0.2 YO for a sphere and 
5% for the ellipsoid. In  this last case it is possible to improve the accuracy by 
increasing the density of collocation points near the end. For example, starting with 
27 equally spaced points, and adding 3 intermediate points in the last three intervals, 
reduces the error to less than 1 % for the ellipsoid. 

The procedure adopted in this paper to evaluate the contribution of the singularity 
gives better precision than the one used by Rallison & Acrivos (1978), which consists 
in replacing the contribution of .I over the interval that contains the singularity by 
the analytical value of the integral of s* over the same interval. The numerical 
integration of (3.4) and the procedure adopted to evaluate the singular contribution 
are validated by means of tests made on solid ellipsoids for which the expression for 
the viscous force q exerted by the external flow on the surface of the particle is given 
exactly by Jeffery (1922). Using this value in (3.4) and integrating, the resulting 
velocity on the surface of the particle should be everywhere zero. Table 1 shows the 
results of this test, made for a prolate spheroid of aspect ratio 4 with 31 evenly spaced 
collocation points. The computed velocity is given for different points of the profile, 
and it is everywhere less than 0.01 YO of its undisturbed value with our procedure, but 
about 1 YO with the procedure of Rallison & Acrivos. A problem arises, though, for 
the velocity computation at collocation point N - 1. When y -+ x, the function to be 
integrated has an O(1) variation between points N and N- 1, and this causes a 
large numerical error. (For example J;. varies from 0 a t  point N - 1 to roughly 
- 4q,(N - 1 )  a t  point N ) .  However, since both the values of the velocity at the end 
point and at point N - 2 were satisfactory, the value of velocity at point N -  1 was 
simply obtained by a linear interpolation between points N - 2  and N .  
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Present Rallison & Acrivos 

I %(I) %(I) %(I)  v,(4 
0 0 0.4 x 10-4 0 0.8 x 1 0 - 3  
1 0.2 x 10-8 0.5 x 10-4 0.3 x 10-4 0.2 x 10-2 

15 0.3 x 0.7 x 0.4 x 0.5 x 
29 0.5 x 0.8 x 0.8 x 0.4 x 
30 0 . 6 ~  0 0.5 x 0 

TABLE 1. Numerical evaluation of the velocity at  the I t h  collocation point on the surface of a 
prolate solid spheroid with axis ratio 4. Comparison between the present treatment of the 
singularities and the method of Rallison & Acrivos. 

Convergence is assumed when the membrane velocity is everywhere less than 
2.5 % of its undisturbed value. Numerical stability is ensured when 

At < GAS. 

This criterion leads to very small values of At, which hopefully may be increased with 
Q. However, for a given repartition of collocation points, when Q increases, A, and 
thus As also increase, and as a consequence the numerical precision of the scheme 
decreases. Indeed, an oscillatory behaviour of the various computed quantities 
appears. This oscillation, which has a half-wavelength equal to the collocation-point 
spacing, is of numerical nature and is due to the numerical derivations. Furthermore, 
as As increases, it  becomes impossible to satisfy the convergence criterion. A possible 
remedy is of course to increase the number of collocation points, and to thus improve 
the numerical precision. The drawback is that the computation time t, per iteration 
grows exponentially with N ,  (numerical tests show that t ,  z 0.02exp (O.OSrU)), and 
also that the time step must be decreased since As is decreased. We decided instead 
to smooth out the deformed positions of the collocation points a t  each iteration, with 
cubic spline functions. This operation does not distort the final result for the 
deformed steady shape of the capsule, since the solution obtained with numerical 
smoothing, as the true solution, satisfies the integral equation 

Since inertia effects are neglected, any solution of (4.2) is a steady deformed shape 
of the capsule such that all problem equations are satisfied. This is verified by 
comparing deformed-capsule profiles obtained with and without smoothing. It 
appears that the two solutions differ by less than 2%, which is within the 
convergence criterion. 

The advantage of the smoothing procedure is that it limits the effect of the 
numerical errors due to derivation and allows convergence with fewer collocation 
points than would be necessary without smoothing. The price to pay though is the 
cost of smoothing which is also an exponential function of N ,  (the time t,, per 
iteration with smoothing was found to be approximately given by t,, z 0.05 exp 
(0 .07N)) .  

Tests were run for a spherical capsule, with N = 48 collocation points (32 evenly 
spaced points, and a density of points multiplied by 4 near the axis of revolution). 
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Without smoothing, the scheme converges up to values of 52 roughly equal to 0.03 
for which the maximum value of A, is 1.2. However, near burst, A, is roughly equal to 
2.8, so that, to reach such deformed shapes, it would be necessary to divide the 
collocation point spacing by a factor between 2 and 3, and also to divide the time step 
by an equivalent factor. With smoothing, the number of points may be kept equal 
to 48. It follows that, as compared to the overall computation time with smoothing, 
the total computation time without smoothing is multiplied by a factor lying 
between 6 and 180 corresponding to a number of collocation points multiplied 
respectively by 2 or by 3. 

5. Results and discussion 
5.1. Definition of deformation 

The overall deformation of an axisymmetric capsule with fore-and-aft symmetry can 
be estimated by means of the following expression : 

u/A - b/  B 
a / A  + b/B ’ 

D =  

where A ,  B are the semi-axes lengths along respectively Ox and Or before deformation 
and a,b the corresponding lengths after deformation. This definition is a 
generalization of the classical one, introduced to measure the deformation of a 
sphere, and thus D varies between 0 (no deformation) and 1 (maximum deformation). 

5.2.  Comparison with other results 
The moderate deformations of an initially spherical capsule, with a Mooney-Rivlin 
membrane material, have been computed and compared to the analytical solution of 
Barthes-Biesel & Chhim (1981) obtained with a regular perturbation technique 
valid to 0(Qz). This comparison indicates a good agreement (within 10 %) between 
the numerical results and the analytical ones as long as 52 is less than 0.01, and the 
deformation less than 10%. This condition may then be considered as the limit of 
validity of the asymptotic solution, which applies anyway only to moderate 
deformations of the particle. 

A second test consists in comparing the present results to those obtained by E. J. 
Hinch (private communication), for a viscous liquid drop, with the same integral- 
equation formulation. These results seem to be more precise than those of Rallison 
& Acrivos (1978). The droplet can be considered as a capsule surrounded by a 
membrane with a constitutive strain-stress relation given by Laplace’s law. The two 
solutions are shown on figure 2, where it appears that there is a very good agreement 
between them. 

5.3.  Burst 
In  all cases studied, it is found that when the flow strength, or equivalently Q, 
increases, the deformation grows, until a critical value 52, is found, above which no 
steady state exists. 

For values of Q less than 52, a steady profile is obtained, the deformation of which 
increases with 52 (see figures 5, 8, 9). Figure 3 shows the variation with time of the 
meridional tension CT,, evaluated a t  x = 0, for two values of 52 below and above Q,. 
When 52 is less than a,, crss reaches a finite steady value, whereas CT,, increases 
without bound when 52 exceeds 52,. A similar behaviour for other quantities such as 
the elongation ratios, the membrane velocity, etc., is observed. It appears that for 
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FIGURE 2. Deformation D of a liquid droplet as a function of capillary number 52. Comparison 
between the results obtained by E. J. Hinch (private communication) and by the present 
model. 

1 1 , 5 ~  .o 0 0.5 1 .o 1.5 2.0 

f 

FIGURE 3. Meridional elastic tension caa at the centre of the membrane (z = 0) as a function of time 
t .  For values of capillary number Q lower than a,, a steady state is reached, whereas when 
B > B,, the tension grows without bound until burst occurs, due to membrane mechanical 
failure. 

A B AIB <a, < A, 
Ellipsoids 0.83 1.10 0.75 0.086 0.090 2.78 

1 .oo 1 .oo 1.00 0.083 0.086 2.75 
1.21 0.91 1.33 0.068 0.072 2.64 
1.59 0.79 2.00 0.057 0.062 2.32 

Slugs 1.14 0.89 1.29 0.076 0.080 2.62 
1.16 0.87 1.33 0.074 0.078 2.60 

Disks 0.77 1.08 0.71 0.092 0.096 2.71 
0.80 1.07 0.75 0.091 0.095 2.68 

TABLE 2. Lower and upper bounds of the critical capillary number. The lower bound corresponds 
to the last steady profile obtained, with a maximum value of the meridional extension ratio A,. The 
upper bound corresponds to a capillary number for which the capsule deforms continuously. 

values above Q,, the capsule continuously deforms until, of course, the membrane 
ruptures. The exact occurrence of burst depends on the mechanical properties of the 
wall material. The numerical model thus gives an estimate of the critical value of the 
shear rate when this phenomenon happens. On table 2 are shown lower and upper 

7 FLM 187 
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v = @ 

AIB K ,  A B 

Ellipsoids 0.75 0.985 0.83 1.10 
0.78 0.989 0.85 1.09 
1.00 1.000 1.00 1 .oo 
1.33 0.986 1.21 0.91 
2.00 0.929 1.59 0.79 
4.00 0.881 2.52 0.63 

Slugs 1.29 0.986 1.14 0.89 
1.33 0.983 1.16 0.87 
1.92 0.929 1.44 0.75 

Disks 0.71 0.985 0.77 1.08 
0.75 0.989 0.80 1.07 

TABLE 3. Capsule geometrical characteristics. The last two columns give the corresponding values 
of the axes of the capsule which has the same volume as the unit sphere. 

4 
0 = 0  

0.036 

r 

1 .O 2.0 3.0 

1 .o 

r 

0.5 

f O = O  
I I 

0.075 

1 .o 2.0 3.0 
X 

FIQURE 4. Successive steady deformed profiles of a capsule for increasing values of the capillary 
number 0. (a )  Prolate ellipsoid A = 1.00, B = 0.75. ( b )  Disk A = 0.75, B = 1.00. The oblate profile 
is deformed into a prolate one by flow. 

bounds for 52,. The lower bound corresponds to the last steady profile obtained, 
whereas the upper bound corresponds to a situation where no steady shape could be 
obtained. The value of the maximum meridional extension ratio is also shown on 
table 2. It appears that near burst A, is of order 2.5, much less than the critical value 
commonly encountered for mechanical failure of an elastomer (A ,  w 4). For a liquid 
drop, this phenomenon of deformation and burst is well known and has been 
observed experimentally as well as modelled theoretically. Correspondingly, 
experimental observations show that when human red cells are subjected to a strong 
shear flow, they eventually burst. The model presented here predicts this behaviour. 
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FIGURE 5. Deformation D of an oblate ellipsoid ( A  = 0.75, B = 1.00), as a function of capillary 
number 52. For values of the capillary number higher than R,, no steady deformation can be 
obtained. 
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FIGURE 6. Meridional and transverse elastic tensions rss, r##, in the membrane, as functions of the 
initial arclength S for an oblate ellipsoid ( A / B  = 0.75). The capillary number is subcritical. 

5.4. Capsules with a neo-Hookean membrane 
For all capsules considered in this section, the membrane material is assumed to be 
neo-Hookean, but different initial geometries are studied : prolate and oblate 
ellipsoids, ‘slugs ’ (cylinder closed by two hemispheres) and ‘disks ’ (two parallel 
circular plates closed by a half torus). The influence of geometry is assessed by means 
of two parameters : the aspect ratio A / B  and the so-called sphericity index K ,  defined 
as follows: surface of the sphere of same volume 

surface of the particle 
K ,  = 

The geometric characteristics of the different capsules are given in table 3, where 
the last two columns indicate the values of the semi-axes for a particle that  has the 
same volume as a sphere of unit radius. The following discussion refers to isovolumic 
capsules. 

7-2 
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A I B  

1.33 

1.33 

1 .oo 

0.75 

0.75 

sz 
FIGURE 7. Values of the final steady meridional elastic tension usa a t  x = 0, as a function of capillary 

number Q, for capsules with different initial shapes. 
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FIGURE 8. Deformation curves of isovolumic capsules. Capsules having the same initial aspect ratio 

A / B  but different shapes behave differently. 

FIGURE 9. 
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Deformation curves of isovolumic capsules. For the same value of the sphericity 
K, ,  the deformation curves are almost superimposed except near burst. 

index 
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The successive steady deformed profiles of a prolate ellipsoidal capsule (A = 1 .00, 
B = 0.75) and of a ‘disk’ (A = 0.75, B = 1.00) are shown on figure 4. It appears that 
the ‘disk’ transforms into a prolate profile, a fact which is consistent with 
observations of red blood cells suspended in shear flows. In both cases, the 
deformations are large, and the final profiles at  high flow strengths are quite similar. 
In the case of an oblate ellipsoid (A = 0.75, B = 1.00), figure 5 shows that for 
increasing values of the flow strength, the deformation D increases and that, just 
before burst, it becomes quite large, of the order of 0.8. 

In order to understand the mechanism of large deformations and of burst of the 
capsules, the stress distribution in the membrane and its time evolution have been 
analysed. For all capsules studied, the results are similar ; they are illustrated for the 
case of an oblate ellipsoid ( A / B  = 0.75). Figure 6 shows the elastic-tension 
distribution along the meridian of the steady deformed membrane as function of the 
initial arclength S, for a relatively moderate deformation (D = 0.4) and near the 
burst limit ( D  = 0.8). In  both cases, us, is a decreasing function of S but is always 
positive. However, a++ is first negative, representing a compressive force near the 
centre, then it becomes positive and represents an extensional force near the 
extremity. For D = 0.8, the ratio as,/u$+ is of order 10 near the centre, and of order 
unity near the axis. Consequently the value of us, governs the deformation and also 
the burst of the capsule, since membrane breakdown is linked to the maximum value 
of the tension in the structure. Figure 7 shows g,, at x = 0 where it is maximum, as 
function of SZ, for different capsules. Burst occurs when the slope of the curves 
increases sharply, and for values of us, and A, respectively larger than 1.5 and 
2.5. 

The influence of geometry on the deformability is studied for isovolumic capsules 
characterized by their initial axis ratio. As shown on figure 8, capsules with the same 
initial aspect ratio AIB, but with different shapes have different deformation curves. 
For values of SZ, not too near SZ,, D is an increasing function of the sphericity index 
K ,  for prolate capsules, and a decreasing function for oblate ones. The deformations 
of two capsules having the same sphericity index K,,  but different initial shapes, are 
compared on figure 9 in the two cases where AIB > 1 or A / B  < 1. It appears that 
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FIGURE 11. Influence of the membrane material properties on the deformation D of a prolate 
ellipsoid with aspect ratio A 1 3  = 1.33. f = 0 corresponds to a neo-Hookean material. As the 
nonlinearity of the material behaviour increases, the capsule deforms more readily, and burst 
occurs at  lower values of Q. 

except near burst, the deformation depends mainly on K,, and not on the exact 
initial geometry, provided the cases of prolate and oblate particles are distinguished. 
The variation of D with K,  for fixed values of 0 are shown on figure 10. For prolate 
capsules, D is not very sensitive to K,. However, for oblate ones, small variations of 
K, (less than 2%)  result in large variations of D (more than 30%). It would then 
seem that K ,  has a strong influence on the deformability of the capsule, as had been 
suspected for red blood cells. 

When the capsules are near burst, the situation is more complex, and the 
sphericity index K ,  cannot alone determine the deformation of the capsule, as shown 
on figure 9, where capsules of the same K,, but of different shapes, have different 
values of 0,. 

5.5. Influence of the membrane material 
It is obvious that the constitutive law of the membrane material must also play an 
important role in the deformability of the capsule. For an hyperelastic membrane, 
the principal parameter is @' which measures the nonlinearity of the material. Figure 
11 shows the influence of +' on the deformation of a prolate ellipsoidal capsule. For 
a given value of 0, D is an increasing function of +', in agreement with Mooney's law, 
which predicts that, under the same load, the more nonlinear the material is, the 
more it deforms. A similar influence of +' exists for all capsules. One consequence is 
that the critical value of 0 becomes a decreasing function of p'. 

5.6. Variation of the membrane local surface area 

The question that arises now is the relevance of this study to biological capsules, such 
as red blood cells for example. It is known that membranes with a bilayer structure 
are essentially incompressible. This means that they deform in such a way as to 
maintain the local surface area constant. In terms of principal extension ratios, this 
condition leads to 

We have thus investigated the variation of the product A, A, along the profile (figure 
12) for different initial shapes but for the same value of the deformation ( D  = 0.6). 

A s h ,  = 1 .  
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FIQURE 12. Evolution of the local area dilatation (&A+) along the capsule profile, as a function of 
the initial arclength S of the capsule meridian. The area change is less important for an initially 
oblate capsule ( A / B  < 1). 
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FIQURE 13. Influence of the membrane properties on the local area change for an oblate ellipsoidal 
capsule with aspect ratio AIB = 0.75. &A,  measures the local area dilatation and S is the initial 
arclength on the meridian of the capsule. 

It appears that A, A, is always greater than unity and, although this is not shown on 
the figure, it  increases with D.  Consequently the capsule deforms with area dilatation 
and hence does not simulate satisfactorily the deformation of a red cell. Nevertheless, 
a comparison of the results obtained for a sphere and for two ellipsoids of aspect ratio 
1.33 and 0.75, shows that for same deformation, the value of (A, A, - 1)  for the oblate 
ellipsoid is roughly half that of a sphere. Furthermore, according to figures 7 and 8, 
for the same 52, the oblate ellipsoid with aspect ratio 0.75 has low values of uss, but 
large values of D.  This is consistent with the fact that the red cell that is discoidal 
in the undeformed state can easily reach large deformations without too significant 
internal tensions and with no area dilatation. 

The curve obtained in the case where +' = 1 indicates the favourable influence of 
non-zero values of yY (figure 13). 

6. Conclusion 
As regards capsule mechanics, the numerical model developed here has provided 

some new informations, particularly on the mechanics of breakup. Indeed, it appears 
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that the burst of a capsule is due essentially to the non-existence of a steady 
equilibrium state between elastic and viscous forces, at least in the case of a 
Mooney-Rivlin membrane. Of course, the constitutive behaviour of the membrane 
material is important and it might be possible that a capsule with a shear-stiffening 
membrane would have a different behaviour. The model also shows the role of the 
sphericity index, which appears to be a very sensitive parameter governing capsule 
deformabili ty . 

The boundary-integral method seems well adapted to model the motion and the 
deformation of a capsule freely suspended in an elongational flow. It has been 
possible to study capsules having different initial shapes and to deform them 
considerably. Consequently, the generalization of the method to three-dimensional 
flows can be conceived. 

The authors wish to thank E. J. Hinch and B. Duffy from the Department of 
Applied Mathematics and Theoretical Physics of Cambridge University for many 
fruitful discussions regarding the adaptation of their work on liquid drops to 
capsules. This research was supported in part by CNRS, ATP98358. 

Appendix 
Let X ( X ,  R,), y(y,  R,) be two points on the meridian of the capsule. 

A . l .  Expressions for J,,, J,,, J,,, J,, (adapted from Youngren & Acrivos 1975): 

J,, = -2kRf&g 

J,, = k(x-y)R,iR,i [ F- E(R:-R;+(X-IJ)')] 

E( R: - R; - ( X  - Y ) ~ )  

R:, 

R:g 

t 

J,, = -k(x-y) RGWg 

(Rz + Ri + Z ( X  - y ) ' )  F 

where 

k2 = 4% R, 
( X - - ~ ) ~ + ( R , + R , ) ~ '  

Ri, = (x-Y)' + (R, - R,)2, 

E = Jr (1 + k2 sin2 $)$ d$, 
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A.2. Expressions for J&., Jj,,  J:,, Jr*, : 

When y - f x ,  x + a (a  is the semi-axis of the capsule) 

Let 

J:, = -2 (F*+t3 ,  

J,*r = - 2(F* - (2  + t:)), 

J x  = -K${[a(x) -s(y)] F* + 2R, t r } ,  

JZr  = K+{[s(x:)-s(Y)I F*-2Rx t r > .  

When y - t x ,  x = a, only the value of JZx is necessary for the calculation. 

J;, = -27~ 

A.3. Analytical expressions for the integrals of JZx, J X ,  JFx, J,*, over the meridian : 
When x =/= a ,  let 

rUJ: ,dy  = -2[F**+2s(a)t:], 

/:aJF,dy = -2[F**-2(2+t:)s(a)], 

la JX dy = - K,[G** + 4R, tr s (a)] ,  

J & d y  = K+[G**-4RXt,s(a)] 

When x = a, 
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